(Ⅰ)圆C:(x-1)2+(y-1)2=1,当b=1时,点M(0,b)在圆C上,
当且仅当直线l经过圆心C时,满足MP⊥MQ.…(2分)
∵圆心C的坐标为(1,1),∴k=1.…(4分)
(Ⅱ)由
,消去y得:(1+k2)x2-2(1+k)x+1=0.①
y=kx
x2+y 2?2x?2y+1=0
设P(x1,y1),Q(x2,y2),
∴x1+x2=
,x1x2=2(1+k) 1+k2
.…(6分)1 1+k2
∵MP⊥MQ,∴
?MP
=0.MQ
∴(x1,y1-b)?(x2,y2-b)=0,即 x1x2+(y1-b)(y2-b)=0.
∵y1=kx1,y2=kx2,
∴(kx1-b)(kx2-b)+x1x2=0,即(1+k2)x1x2?kb(x1+x2)+b2=0.…(8分)
∴(1+k2)?
?kb?1 1+k2
+b2=0,即 2(1+k) 1+k2
=2k(1+k) 1+k2
=b+
b2+1 b
.1 b
令f(b)=b+