高一数学选择题:

2025-12-16 11:28:05
推荐回答(4个)
回答1:

选 A
tanA-1/sin2A=tanB得sinA/cosA -1/sin2A =sinB/cosB
左边=2sinA*sinA/(2sinA*cosA)-1/sin2A =(2sin⒉A -1)/sin2A
=-cos2A/sin2A =右边=sinB/cosB
即:cos2A *cosB +sin2A *sinB =cos(2A-B)=0
又三角形为锐角三角形,得2A-B =90度
sin2A = sin(B+90度)=cosB,从而:sin2A-cosB=0,选A

回答2:

选A.
tanA-1/sin2A=sinA/cosA—1/(2sinAcosA)=(2sinA² —1)/(2sinAcosA)= (—cos2A)/sin2A=
—tan2A=tanB =>tan2A+tanB=0 然后通分化简可得cos(2A—B)=0,因为A、B为锐角,
所以2A—B=兀/2, 所以sin2A—cosB=sin(B+兀/2)—cosB=0.

回答3:

A

回答4:

B