范德蒙行列式这个怎么算的啊?那个最后那个乘式怎么来的(2-1)(3-1)(-1-1)(3-2)(-

2025-05-08 16:58:06
推荐回答(1个)
回答1:

范德蒙德行列式的标准形式为:即n阶范德蒙行列式等于这个数的所有可能的差的乘积。根据范德蒙行列式的特点,可以将所给行列式化为范德蒙德行列式,然后利用其结果计算。
范德蒙行列式就是在求线形递归方程通解的时候计算的行列式.若递归方程的n个解为a1,a2,a3,...,an则范德蒙行列式如右图所示:

共n行n列用数学归纳法. 当n=2时范德蒙德行列式D2=x2-x1范德蒙德行列式成立 现假设范德蒙德行列式对n-1阶也成立,对于n阶有: 首先要把Dn降阶,从第n列起用后一列减去前一列的x1倍,然后按第一行进行展开,就有Dn=(x2-x1)(x3-x1)...(xn-x1)Dn-1于是就有Dn=∏ (xi-xj)(其中∏ 表示连乘符号,其下标i,j的取值为m>=i>j>=1),原命题得证.
范德蒙德行列式的标准形式为:即n阶范德蒙行列式等于这个数的所有可能的差的乘积。根据范德蒙德行列式的特点,可以将所给行列式化为范德蒙德行列式,然后利用其结果计算。常见的方法有以下几种。1利用加边法转化为范德蒙行列式例1:计算n阶行列式分析:行列式与范德蒙行列式比较。
例:
缺行的类似范德蒙行列式  1 1 1 1
a b c d
a^2 b^2 c^2 d^2
a^4 b^4 c^4 d^4