这样
当n=1时,S1=a1,即2a1=3a1-3,a1=3当n≥2时,an=Sn-Sn-1两边乘以2,将Sn与an的关系式代入,得2an=3an-3-3an-1+3,即an=3an-1∴{an}为首项为3,公比为3的等比数列∴an=3^n
2Sn =3an-3n=12a1=3a1-3a1=3for n>=2an = Sn -S(n-1)2an = 3an -3a(n-1)an = 3a(n-1)=3^(n-1) .a1=3^n