证明:(1)∵AB=AC,AD⊥BC,
∴∠BAD=∠CAD,∠ABC=∠ACB,
又∠MAC=∠ABC+∠ACB=2∠ACB,
又AN平分∠MAC,
∴∠NAC=∠MAN=∠ACB,
∵∠MAN+∠CAN+∠BAD+∠CAD=180°,
∴∠DAE=∠CAD+∠CAN=
×180°=90°,1 2
又CE⊥AN,AD⊥BC,
∴∠ADC=∠AEC=90°,
∴四边形ADCE为矩形;
(2)∵四边形ADCE为矩形,
对角线DE与AC相交于点F,
∴F是AC的中点,
∵D是BC的中点,
∴DF为△ABC的中位线,
∴DF=
AB.1 2