如图所示,求不定积分

2025-05-07 21:27:05
推荐回答(2个)
回答1:

解答过程如下图:

回答2:

令√x=t,x=t²,则dx=2tdt
原式=∫arctant*2tdt/t(1+t²)
=2∫arctantdt/(1+t²)
=2∫arctantd(arctant)
=2[arctan²t-∫arctantd(arctant)]
即原式=2∫arctantd(arctant)=arctan²t
∴原式=1/2*arctan²t+C=1/2*arctan²√x+C