如图所示,AB高h=0.6m,有一个可视为质点的质量为m=1kg的小物块,从光滑平台上的A点以某一初速度v0水平抛

2025-05-10 15:03:01
推荐回答(1个)
回答1:


(1)小物块在C点时的速度为
vC=

v0
cos60°
                                                          
AC过程由动能定理有:
1
2
m
v
?
1
2
m
v
=mgh

联解以上两式得:v0=2m/s,
(2)小物块由C到D的过程中,由动能定理得
mgR(1-cos 60°)=
1
2
mv
 
-
1
2
mv
 
                                      
代入数据解得vD=2 
5
 m/s                                             
小球在D点时由牛顿第二定律得,
FN-mg=m                                                        
代入数据解得FN=60 N                                                 
由牛顿第三定律得FN′=FN=60 N    方向竖直向下.                     
(3)设小物块刚滑到木板左端时达到共同速度,大小为v,小物块在木板上滑行的过程中,小物块与长木板的加速度大小分别为:
a1=
μmg
m
=μg=3 m/s2
a2=
μmg
M
=1 m/s2                                      
速度分别为:
v=vD-a1t                                                            
v=a2t                                                                
对物块和木板系统,由能量守恒定律得
μmgL=
1
2
mv
 
-
1
2
(m+M)v2                                                
解得L=2.5 m,即木板的长度至少是2.5 m.
答:(1)平抛初速度为2m/s;
(2)小物块刚要到达圆弧轨道末端D点时对轨道的压力大小为60 N,方向竖直向下;
(3)要使小物块不滑出长木板,木板的长度L至少为2.5m.