函数y=(x²-x+1)^x的导数
解:两边取对数:lny=xln(x²-x+1)
两边对x取导数:y′/y=ln(x²-x+1)+x(2x-1)/(x²-x+1)
故y′=y[ln(x²-x+1)+(2x²-x)/(x²-x+1)]=[(x²-x+1)^x][ln(x²-x+1)+(2x²-x)/(x²-x+1)]
具体过程如下:
两边取e对数得到 Lny=XLn(X2+X+1)
两边同时求导
得到Y导数为Ln(X2-X+1)*(2X-1)*y ==(x^2-x+1)^x[ln(x^2-x+1)+x*(2x-1)/(x^2-x+1)}
y=(x^2-x+1)^x lny=xln(x^2-x+1) ,y'/y=ln(x^2-x+1)+x*(2x-1)/(x^2-x+1)
y'=(x^2-x+1)^x[ln(x^2-x+1)+x*(2x-1)/(x^2-x+1)}