这是一个 ∞/∞ 型的极限,可以使用罗必塔法则:
=lim (sec²x)/[3sec²(3x)]
=lim (1/cos²x)/[3/cos²(3x)]
=lim cos²(3x)/(3cos²x)
=1/3 * lim cos²(3x)/cos²x
这是一个 0/0 型的极限,继续使用罗必塔法则:
=1/3 * lim [2cos(3x) * -sin(3x) * 3]/[2cosx * (-sinx)]
= lim [2sin(3x)*cos(3x)]/[2sinx*cosx]
=lim sin(6x)/sin(2x)
这还是一个 0/0 型的极限,继续使用罗必塔法则:
=lim 6cos(6x)/[2cos(2x)]
=3 * lim cos(6*π/2)/cos(2*π/2)
=3 * lim cos(3π)/cosπ
=3 * lim (-1)/(-1)
=3
原式=lim(x->π/2)(sinx/cosx)/(sin3x/cos3x)
=lim(x->π/2)(1/cosx)/(-1/cos3x)
=-lim(x->π/2)(cos3x/cosx)
=-lim(x->π/2)(-3sin3x)/(-sinx)
=-3lim(x->π/2)(sin3x)/(sinx)
=-3lim(x->π/2)(-1)/1
=3