已知f(x)是实数集R上的减函数,且f(x⼀y)=f(x)-f(y),f(2)=1,解不等式:f(x)+f(x-7)>=3

2025-05-07 21:00:17
推荐回答(2个)
回答1:

令 x=xy,由f(x/y)=f(x)-f(y)得,f(xy/y)=f(xy)-f(y),f(xy)=f(x)+f(y),且xy≠0
f(4)=f(2*2)=f(2)+f(2)=1+1=2,f(8)=f(4*2)=f(4)+f(2)=2+1=3
f(x)+f(x-7)≥3,
f[x(x-7)]≥f(8)
f(x)是实数集R上的减函数
x(x-7)≤8
-1≤x≤8,xy≠0,x≠0
x∈(-∞,-1]∪(0,8]

回答2:

f(2)=f(4/2)=f(4)-f(2)
2f(2)=f(4)
f(4)=2
f(4)=f(8/2)=f(8)-f(2)
f(8)=f(4)+f(2)=3
3=f(8)
f(x)+f(x-7) ≥f(8)
f(x-7)≥f(8)-f(x)=f(8/x)
因为f(x)是减函数,所以
x-7≤8/x
(8-x²+7x)/x≥0
x(x+1)(x-8)≤0(x≠0)
x∈(-∞,-1]∪(0,8]