(1)
连接AD,OD,
∵AB是直径,
∴∠ADB=90°,
即AD⊥BC,
∵AB=AC,
∴AD平分∠BAC,
∴∠OAD=∠CAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠ODA=∠CAD,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥EF,
∵OD过O,
∴EF是⊙O的切线.
(2)①解:设⊙O的半径是R,
则FO=4+R,FA=4+2R,OD=R,
∵OD∥AC,
∴△FOD∽△FAE,
∴
=OD AE
,FO FA
∴
=R 6
,4+R 4+2R
即R2-R-12=0,
∵R为半径,
∴R=4,R=-3(舍去),
即⊙O的半径是4.
②证明:∵OD⊥EF,
∴∠ODF=90°,
∵FO=4+4=8,OD=4,
∴∠F=30°,
∴∠FOD=60°,
∵OB=OD,
∴△OBD是等边三角形,
∴∠ABC=60°,
∵AC=AB,
∴△ABC是等边三角形.