(2013?莆田模拟)如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC边于点D,过D作DE⊥AC于点E,交AB的延

2025-05-10 18:57:42
推荐回答(1个)
回答1:

(1)
连接AD,OD,
∵AB是直径,
∴∠ADB=90°,
即AD⊥BC,
∵AB=AC,
∴AD平分∠BAC,
∴∠OAD=∠CAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠ODA=∠CAD,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥EF,
∵OD过O,
∴EF是⊙O的切线.

(2)①解:设⊙O的半径是R,
则FO=4+R,FA=4+2R,OD=R,
∵OD∥AC,
∴△FOD∽△FAE,

OD
AE
=
FO
FA

R
6
=
4+R
4+2R

即R2-R-12=0,
∵R为半径,
∴R=4,R=-3(舍去),
即⊙O的半径是4.

②证明:∵OD⊥EF,
∴∠ODF=90°,
∵FO=4+4=8,OD=4,
∴∠F=30°,
∴∠FOD=60°,
∵OB=OD,
∴△OBD是等边三角形,
∴∠ABC=60°,
∵AC=AB,
∴△ABC是等边三角形.