曲线y=f(x)在x=1处的切线斜率是f'(1)=2则:f'(x)=1+(a/x)f'(1)=1+a=2得:a=1即:f(x)=x+lnx g(x)=x+lnx+(1/2)x²-bxg'(x)=1+(1/x)+x-b=[x²-(b-1)x+1]/(x)则g'(x)在x>0时,满足:g'(x)≤0x²-(b-1)x+1≤0 【因为x>0】得:b-1≥x+(1/x)又:x+(1/x)≥2则:b-1≥2得:b≥3