4^(n+1)=4*4^n, 可以与分母4^n约分,(n+1)!与分母n!约分就是n+1,lim4*4^n(n+1)*n!/(n+1)(n+1)^n●n^n/4^nn!n→∞=lim4*n^n/(n+1)^nn→∞=lim4(n/(n+1))^nn→∞=4/e.
分子变形 4成4的n次,(n+1)成n!之后约分就好
(n+1)!=n!×(n+1)约分后变成lim 4×n^n/(n+1)^n=lim 4×[n/(n+1)]^n