当x→0 时,x⼀sinx 的极限等于多少?

2025-12-14 16:35:56
推荐回答(1个)
回答1:

回答如下:

limsinx(x->0)=0

limx(x->0)=0

(sinx)'=cosx;(x)'=1

=lim(sinx/x)

=lim(cosx/1)

=cos0

=1

极限的性质:

和实数运算的相容性,譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列{xn+yn}也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。

与子列的关系,数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。