已知cos(x-y⼀2)=-1⼀9,sin(x⼀2-y)=2⼀3,0<x<π,0<y<π⼀2求cos(x+y)的值

2025-05-09 03:10:33
推荐回答(1个)
回答1:

cos(x-y/2)=-1/9,sin(x/2-y)=2/3,0
因为cos(x-y/2)=-1/9 0所以 π/2<(x-y/2)<π
sin(x-y/2)=4*√5/9
因为sin(x/2-y)=2/3,0所以 0<(x-y/2)<π/2
cos(x/2-y)=√5/3

cos[(x-y/2)-(x/2-y)]=cos(x-y/2)*cos(x/2-y)+sin(x-y/2)*sin(x/2-y)=-1/9*√5/3+4*√5/9*2/3=7*√5/27

cos(x+y)=cos2[(x-y/2)-(x/2-y)]=2cos^2[(x-y/2)-(x/2-y)]-1=-239/729