以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,设AM=m,DP=t,则P(0,0,t),M(a,m,0),C(0,2,0),∴ PM =(a,m,?t), CM =(a,m?2,0),∵PM⊥CM,∴ PM ? CM =a2+m2-2m=0,∴a2=-m2+2m=-(m-1)2+1≤1,∵0≤m≤1,∴0≤a2≤1,又a>0,∴实数a的取值范围是(0,1].故答案为:(0,1].