在梯形ABCD中,AB=CD,
∴∠ABC=∠C.
∵AD∥BC,∴∠ADB=∠DBC.
∵BD平分∠ABC,∴∠ABD=∠DBC.
∴∠ABD=∠ADB=∠DBC=
∠C.1 2
∴AB=AD=DC.
又∵BD⊥DC,2∠DBC=∠C,
∴∠DBC+∠C=90°,
∴∠DBC+2∠DBC=90°,
∴∠DBC=30°.
∴DC=
BC.1 2
设AB=x,则AB=AD=DC=x,BC=2x.
∴x+x+x+2x=20,解得x=4.
∴AD=4cm,BC=8cm.
∴中位线长=
=AD+BC 2
=6(cm).4+8 2