解:(1)连接OC.∵∠BOC=2∠BAC,又∵∠BAC= 1 2 ∠BOD,∴∠BOD=∠BOC,∴ BC = BD ,(2)∴AB⊥CD,∵AE=CD=8,∴DE═ 1 2 CD=4,设OD=r,则OE=AE-r=8-r,在Rt△ODE中,OD=r,DE=4,OE=8-r,∵OD2=DE2+OE2,即r2=42+(8-r)2,解得r=5.