(Ⅰ)由圆C:x2+y2-2x-4y+1=0,得(x-1)2+(y-2)2=4,
∴圆C的圆心坐标C(1,2),半径为2,
当过点M的圆C的切线的斜率不存在时,圆的切线方程为x=3;
当过点M的圆C的切线的斜率存在时,
设过点M的圆C的切线方程为y+2=k(x-3),即kx-y-3k-2=0.
由题意得:
=2,解得k=-|k?2?3k?2|
k2+1
.3 4
∴过点M的圆C的切线方程为?
x?y?3×(?3 4
)?2=0,即3x+4y-1=0.3 4
综上,过点M的圆C的切线方程为x=3或3x+4y-1=0;
(Ⅱ)设N(x,y),A(x1,y1),B(x2,y2),
则x1+x2=2x,y1+y2=2y,
(x1?1)2+(y1?2)2=4 ①,
(x2?1)2+(y2?2)2=4 ②,
两式作差得:
=?
y1?y2
x1?x2
=
x1+x2?2
y1+y2?4
.x?1 y?2
∴
=y+4 x?3
.x?1 y?2
整理得:x2+y2-4x-2y+11=0.